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The motion of plasma clusters in magnetic fields has long been under intensive study. 
A wide range of studies on the subject has been carried out in connection with the prob- 

lems of plasma injection and confinement in a magnetic field (e. g. see [l and 01). In 
these applications the plasma conductivity is large, so that the magnetic Reynolds num- 
bers It,,, considerably exceed unity ; the rate of diffusion of the magnetic field is suffi- 

ciently small. 
Many studies of unsteady motions of plasma clusters have been related to the design 

of propulsion devices (e.g. see [3 7 71). These studies have been concerned with the 
conversion of the electrical energy stored in the discharge circuit into kinetic energy of 
the cluster. The theoretical models employed usually presupposed that the current flow- 

ing through the cluster is either uniformly distributed or breaks down into separate pin- 
ches. It was assumed in most cases, however, that the flow of current through the cluster 

is rectilinear. 

Interest has recently been growing in another aspect of the problem of motion of plas- 

ma clusters , namely, in the flow of conducting gases in shock and electric discharge 
tubes and in channels with generation of electrical energy in the impulsive discharge 

process. These motions are characterized by the presence of traveling fronts which inter- 

act with the field. This makes it important to investigate the diffusion of the magnetic 
field into the cluster and its braking as a result of eddy current formation. 

Diffusion of a magnetic field into an undeformable cluster moving at constant velo- 
city was investigated in [S]. It was assumed there that the magnetic field was planar 
and that the moving body was an infinite cylinder of square cross section, so that the 
electric currents flowed parallel to the cylinder generatrix. The motions of a conducting 

piston at constant velocity between electrodes were considered in one-dimensional for- 

mulation in [9]. 
In contrast to the above studies, the present paper deals with the braking of clusters in 

channels whose walls are either everywhere nonconductive or contain two ideally con- 
ductive zones (electrodes) connected to an external load. under such conditions the 
kinetic energy of the cluster is transformed into Joule heat released inside it and into 
electrical energy which is fed into the external load. An important factor in this process 

is the formation of closed electric eddy currents in the cluster as it enters and leaves 
the magnetic field. The formation of eddy currents explains the braking of the cluster 
in a channel with nonconductive walls, when the total energy of the cluster (the sum of 
its kinetic energy and Joule heat) becomes constant. 

We note that spatial effects of closed eddy current formation during steady magneto- 
hydrodynamic channel flow have already been investigated (see surveys [lo and 111). 
Unsteady electric fields formed during motion of a medium with time-dependent con- 
ductivity were investigated in [12]. The gas velocity distribution in these studies was 
assumed to be known and independent of interaction with the magnetic field. The major 
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emphasis in the present paper is shifted to the problems of dynamics of the medium (its 
braking) under conditions close to those realized in electric discharge apparatus and 

devices with impulsive generation of electric energy at moderate gas conductivities . 
Our model of the medium will be a nondeformable conductive gas cluster which expe- 
riences braking in the channel as a result of interaction with the magnetic field. 

1, Let us consider the motion of a plasma cluster in a cylindrical channel in the exter- 
nal magnetic field 13,. We assume.that variations in the size and shape of the cluster 
volume are negligible (that the solid-body model is valid) (*) . We also assume that the 
cluster is in contact with the channel walls and that its end surfaces are perpendicular 
to the channel axis. 

The equation of motion of the cluster is of the form 

(l-1) 

Here /If and 1 are the mass and length of the cluster ; v(t) is its velocity along S; 

fc(t) is the sum axial force acting on the cluster : j&,1) is the volume density of the 
forces ; X(t) is the position of the front end surface ; F = const is the transverse 
cross-sectional area of the channel. 

We assume that the force of friction of the cluster against the channel walls and the 
resistance of the external medium are much smaller than the electromagnetic forces. 
In this case 

fx = f (j x BjX (1.2) 

Here 1) and j are the magnetic field and electric current density vectors; C is the 
velocity of light in vacuum. 

Multiplying Eq. (1.1) by v, we obtain 
_. 

(1.3) 

The quantity A is the work ‘done by the cluster (per unit time) in overcoming the 
resistance of the magnetic field. 

Integrating (1.3) over time from the instant t = t1 when the cluster moves outside 
the magnetic field zone with the velocity V, to the instant t > t,, we obtain 

Thus, the sum of the kinetic energy of the cluster and of the work it does to overcome 
the resistance of the magnetic field remains constant. 

In order to find the cluster velocityV(t)we must know the distributions of j and B 
in the interval X - 1 < 2 < X at each instant. These distributions can be found 

from Maxwell’s equations 

*) In the case where the time of interaction of the cluster with the field is of the order 

2 / V (1 and V are the length and velocity of the cluster), the soli&body model is appli- 
cable if the velocity of propagation of perturbations in the plasma is much smaller than V. 
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rot 1~1 = yj+$$, divBl = 0 

1 (3133 rot, E := - c 7 ) 
j=ci E+$vx-B ( > (1.4) 

div B, = 0, rot B, = 0, n = 15, (2, y, z) + Bi (5, y, 2, 4 

In these equations 13, and B, are the induced and applied (steady) magnetic fields; 
6 is the electric field vector. In writing Eqs. (l-4} we assumed that the dielectric con- 
stant of the medium e =const; the magnetic permeability was assumed to equal unity. 

Making use of Ohm’s law (the fourth relation in (1.4)). we can rewrite Expression 

= 4s[l~T(f-E)jdfdx= Q-I-N 

(4 *5) 

The quantities Q and N naturally represent the Joule dissipation (per unit time) in 
the cluster and the electrical power generated in it, respectively. 

On the introduction of the vector potential B .according to Formula 13, = rot sb , 
the expression for the power N becomes 

s 

N = 

x 
-_ s SC divcpj-qdiv j + $a$j dl’dx= N,$ Ni 

x-1 F 
> 

x 
N c= S rpi,dC, iVt = (1.0) 

x 5 S( 
X-l F 

zdiv-$+ ~~j)d~dx 

Here cp is the electric potential, In obtaining these formulas we made use of the first 
relation in (1.4). The quantities N, and NC represent the energies lost by the cluster per 
unit time through induction (Nt) and as a result of energy removal through the channel 
walls (NC). 

Let us estimate the order of magnitude of the terms appearing in Formulas (1.4) - 
- (1.6). It is clear that the ratio of the terms containing and not containing the deriva- 
tive .aE/ at, is of the order e r= a/ ~JE(J,&,, (the asterisk subscripts here and below 
denote the characteristic values of the parameters). In the problems under consideration 
which are characterized by the conditions d, z 1O-g + 102 mho/cm and t, >jO-SC, 
the quantity ei is much smaller than unity,so that the bias currents can be left out of 
the electrodynamic equations. 

Let us now estimate the transient term in the third equation of system (1.4). We note 
that in our case this term is related to two processes. The first is the diffusion of the 
magnetic field into the conductive body moving through it. We assume that the diffusion 
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time is much smaller than the characteristic transit time Z/V,. If this is the case (this 
condition is clearly equivalent to the inequality R,,,(Z) = /I;la,T/,Z/cs 4 I), we can 

assume that the effects associated with skin layer 
formation are negligible. 

The second process is the appearance of the induced 
magnetic field (as a result of displacement of the 
cluster through the external magnetic field which, 
by hypothesis, penetrates the cluster “immediately”) 
and of the eddy electric field 13, due to the variation 
of Bi with respect to t . For example, let us consider 
the motion of a cluster through a channel with non- 

conductive walls in the presence of an external mag- 

netic field whose geometry is shown in Fig. 1. In posi- 
tion a (Fig. 1) the field I$ in the cross section t = 0 
is close to zero. However, when the forward front of 
the cluster has traveled the distance h (equal in order 
of magnitude to the transverse dimension of the chan- 
nel), the eddy electric current which has formed gives 

rise to the maximum induced magnetic’field. The ratio of R, to the characteristic quan- 
tity V,I!?,/C is defined by parameter 

es = R, (h) h/V.&, R,,,(h) = 4;to,V*h/c2 

It is clear that the characteristic time of this process is on the order of h/v, so that 
.e2 M R, (h). 

From now on we shall assume that R,,(h) < 1, so that terms containing the deriva- 
tives of I3 and $2 with respect to time can be left out of the electrodynamics equations. 
The electric current vector then becomes potential @ = - v(f) and the quantity 1% 
in Ohm’s law must be replaced by 13,. The integral characteristics are related by Expres- 

sion A =Q+N, (1.7) 
Formula (1. ‘7) indicates that if energy is not supplied to the cluster from an external 

source (iv, > O), then the quantity A is always positive and the cluster is braked by 
the magnetic field. In passage of a cluster through a channel with nonconductive walls 

A Q- = 
The simplified system of electrodynamics equations is a quasi-steadystate system. 

On application of the operation div to the fourth relation of (1.4) it reduces to Eqs. 

.&p = 0, j=Q 
( 
-Vq ++vx B,> 

ix = 0 for z = X - I, x = X (1.8) 

To these conditions at the end cross sections we must add conditions at the boundary 
between the cluster and the channel walls. 

Eqs. (1.8) coincide with the system of equations which describes the steadystate dis- 
tribution of an electric field in the channels of magnetohydrodynamic devices and has 

already been investigated in several papers [lo and 111 . This makes it possible to use 
available results in solving Eqs. (1.8). 

Let us assume that the boundary conditions (which can be written either in differential 
or in integral form, depending on the type of problem) contain just one new quantity 
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(i. e. one which does not appear in system (1.8)). This is the external resistance 11. 
According to (1. 8). the integral electric characteristics At @ and ‘NC for a fixed mag- 
netic field geometry are in this case functions of the quantities u, ~/CITE+, IL, X, I, 
2a, R (h and 2a are the characteristic dimensions of the channels in the 9 - and z- 
directions). Hence, on the basis of similarity and dimensionality theory [13] we have 

"nsV'?B W 

A=-Y-- s 
( (11 = +) (1.9) 

Substituting this expression into (1.3) and noting that clV/clt = VdV/dX, and con- 
verting to dimensionless variables, we obtain 

The quantity 6 entering into this equation is the magnetohydrodynamic interaction 
parameter ; 7 is the dimensionless coordinate of the front end surface of the cluster. 

Integrating Eq. (1. 10) under the boundary condition u (- 00 ) = 1 according to 

which the cluster does not interact with the magnetic field at left infinity, we obtain 

21 = 1 - 67’ (I]), IL* _ -!.zz 
b ’ 

7’ (II) = \ S(q) r/l] (1.11) 

If the cluster moves through a channel with nonconductive walls (;l = e), then the 
quantity ,c is Ehe dimensionless Joule dissipation in the cluster occupying a position 
X - 1 < x < X. The cluster is braked only as a result of Joule heat release. 

If electrodes connected to an external load R are installed at certain positions in the 
channel walls, braking of the cluster occurs due both to Joule heat release and to the 
release of electrical energy in the external circuit. 

2. Let us suppose that the cluster moves in a channel - 00 ( x < 00, 0 < !I ( 
< h = COILS~, 1 z 1 < 2~. = COIISI, with nonconductive walls in the presence of an 

external magnetic field II,: = (U,(z, z), 0, fl;(x, 2)). One way to produce such a 
field by means of an electromagnet whose size in the !/-direction exceeds the height /L 
of the channel. 

On averaging system (1.8) over the z-coordinate we obtain two-dimensional equa- 
tions in the average currents and potential [lo and 111 (for simplicity, we use the old 
letter symbols to represent the average quantities), namely 

~+c$=o, jx=-52, j” = - +-V& 
c 

(2.1) 

jx = 0 ior x = S, x=s-i (I)<y<h) (2.2) 

i,, = 0 for !1=0, ?l=h (X--I<X<X) 

In this system the quantity B = B(X) represents the field component 11, (x, 3) 
averaged over z. 

Since div j = 0, we can introduce the dimensionless “stream function” (11 defined 

by the relations . &, nm 
J-r= 42th a(y//l) ’ JI/ = _cB, f3l) 

dil’b d(s/ h) 
(2.3) 

The quantity B,U) is the induced magnetic field. 
Let us convert to the dimensionless variables 
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z 2” z - h, go=+, j= % VB,j’+ Q, = a V13,yp” 

B(z) = f@*)_&, X = qh, I=hb (2.9 

Omitting the zero superscripts next to the dimensionless quantities for simplicity, we 
obtain from (2.1),(2.2) the following boundary value problem for the function CD: 

&P=R,$- (R,,,=+h) 02.5) 

(I,=0 for g=q y=l (TJ-b<z<q); s=q--b, x=--q (O<Y<i) 

The general solution of the system (2.5) can be constructed in the form of trigono- 
metrfc series. The final result is of the form 

cf, (z, y) = IS, 2 @” (a$ sin 2r”y, f” = $ (BY - 1) (2.61 
“4 

X df 
@” (z) = A, ch 2r,s + B, sh 2Fv2 + & {exp (2M) 1 dr exP (-- 2r”z) dr - 

Y 
n 

Ai =: & [a” sh (2Fv?) f Py sh [2r, (b - q)]], 
Y 

B v = & If4 ch 12rv (b - q)] - uv sh (2r,q)+] 

exp I- 2r, (b - rl)l “l ay = Zr,’ 5 - (2F&) dZ, 
o-b 

exP (- Zr,rl) n 
Py = 2r,l 1 g e~p(2r~~)~~ 

s-b 

The function S(q) is given by Expression 

(2.7) 

(2.8) 

Let us consider two configurations of the magnetic field, 

f&I = W4 (2.9) 

f(X) =H~+---~(~--~~ 
1 0 for 2 < 0 

H(r)=\ i for r>O 
(Wl) 

Here function II(a$is a Heaviside unit function, and the quantity g is the dimension- 

less length of a segment of the uniform magnetic field. 
~lations (2.9) and’@. 10) are diagrammed in Figs.2 and 3. 
The derivatives of the function f and the quantity S in these cases are given by 

Formulas 

I’ (5) = 6 (4, Wl) = - 15r0+ (2.11) 
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f’(x) = 6(X)-4(X--~), S(q) = - yj + [a), (0) -@,(r)] (2;12) 

Here 6 (z) is Diiac’s deltii. 
v=, ” 

Formulas (2.11) correspond to relation (2. S),and (2.12) correspond to realtion (2.10). 

Fig. 2 Fig. 3 

Let us consider the functions in the case of magnetic field (2,Q). If, q ( 0 ocll >b 
(the cluster is either outside the magnetic field, or lies entirely within it), then the 

Joule dissipation is equal to zero (8 = 0). When q (0 the electric field in the clus- 

ter is equal to zero. If 9 > b and the cluster is enveloped by the uniform field, the 
electric charge in it experiences separation, and j s 0. The Joule dissipation differs 
from zero only when the cluster intersects the cross sect%& x = 0. The quantity S 
is in this case given by Formula 

S=S 
1 

v& 

Bh (2~“~)~~~~~~~ - a1 
Y (0 d tl6 8 Y (2.13) 

The function S ($ increases from 5 (0) = 0 to S = &‘,a, for rl = l/s b and 
then decreases to tier& The functions S, (I) for several b appear in Fig, 4. The Joule 

dissipation inckases with increasing clus- 
ter length 

a 
” 

Fig. 4 Fig. 5 

The function 2’ (q) defined by Formula (1, II) is of the form 

T=O for Y<O 
h Zr,q ch (2r,b) 

(2.M) 

T = TX (q).= 2 
- sh (Zr,@ ch (b - q) 

dr,r sh (‘lr,b) for O,<q’<ft 
V-_-l 

2’ = TX (b) for *1>, & 
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Now let us consider the electric field in a cluster in the case of magnetic field (2.10). 
Here two situations are possible : ‘j’ >- b and 7 < b. 

If the magnetic field zone is longer than the cluster (7’ >p b), then the current distri- 
bution can be found with the aid of the case considered above. In fact, we have 

(2.151 
‘(I (‘1 < 0) f(l (11 < 0) 
Sl(9) (0 < 11-c 6) 7’1 (11) (0 < ‘7 < b) 

s= co (b < rl <Y) 7’ Z ( 7’1 (r;) (b < VI< 7) 
Slct - 9 + 4 (7 < 9 <r + b)’ 

\O (n> 7 + b) &‘I (b) 
ZT’1 (b) - 7’1 (r - n + b) ;; 2 ;; a,’ ‘f) 

When the magnetic field zone is smaller than the length of the cluster, it is necessary 

to have data on Joule dissipation in the position indicated in Fig. 3. 
From general solution (2.6),(2.7) and Formula (2.12) we obtain 

S = S,(q) = 2 2 r 8sfhrc,b [sh [r, (26 - 391 - sh (rvr) ch [2r, (b + T - 27)]] 
v=L ” 

(7 < ‘1-c ZJ -I- 7) (2.16) 

-- sh (rvr) sh 12rv (q - r)] ch WV (b - q)]) (2.17) 

1 

0 (tl CO) 
Y’l (rl) 

7’ (q) = 
(O<?<T) 

?‘1(7) -I- T? (q) (-r < 11< b) (2.18) 
WI(~) + Yp (1)) - TI (y - q + b) (b < II< b + ‘r) 
Y, ( y) -t 7’2 (h) (rl> b -1-r) 

Fig.5 shows the relation /L* = I?-’ (1 -- I/.), computed from Formulas (2.14) for 
magnetic field (2.9) for several cluster lengths 6 (solid curves). All of the curves prac- 
tically coincide for small 11 . Thus, when 2, -u 1 braking of the cluster in the first 

stage (as it enters the magnetic field zone) is weakly dependent on its length. Subsequent 
braking of longer clusters is more intense and terminates later (for larger values of rl) 
than is the case with short clusters. 

Variation of the cluster velocity in magnetic field (2.10) under the condition 6 < r 
is shown in Fig. 5 (broken curves). The computations were carried out using Formula 
(2.15) for 7’ = 2. The solid and broken curves coincide in the range 0 (‘1 < 2 . 
Braking increases with increasing cluster length. For b = 2 the cluster in the 0~ q <4 
is braked continuously. If b < 2, then the cluster travels with constant velocity over 
a certain portion of its path. 

Fig. 5 also shows u*(q) for magnetic field (2.10) computed for r = O.S, b = 1 
(dot-and-dash curve 1). Since the cluster is longer than the magnetic field zone, its 
braking is continuous, and two eddy current zones (at entry into and emergence from the 

field) arise in the cluster for 0.5 < 11 < 1. 
Let us compare curves 1 and 2 (curve 2 corresponds to the motion of a cluster of length 

b = 1 in a magnetic field of length 7 = 2). For q < 0.5 these curves coincide. 
Then, for 0.5 < q ( 1, curve 1 rises above curve 2 due to the formation of a second 
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eddy zone in the cluster for ~=0.5. When 31 lies in the range (1, ls),the curves diverge 
even more, since, if r = 2, the whole cluster enters the zone of the uniform magnetic 
field and travels at constant velocity. However, if r = 0.5, then the cluster leaves the 
magnetic field zone completely for t) > 1.5, while for y = 2 and 2 < q < 3 the 

cluster once again begins to experience braking by the magnetic field. Thus, the sum 
decrease in velocity turns out to be larger in the case of a long magnetic field. 

9, Let us consider the motion of a cluster in a channel of rectangular cross section 

00 <x (00, 0 ( y <h, 1 z 1 < 2U with walls which are nonconductive. except 

forthdareas 0 <x'<yh,y=O,lzI (2~ and 0 <z <yh,y =Iz,lzj(2a, 
where there are electrodes connected to the load R. We assume that the external mag- 
netic field has the same structure as in Section 2, and that upon averaging over the z- 
coordinate the dimensionless field component B, (5, 2) is given by Formula (2.10). 
The case under consideration is therefore that when the electrode zone coincides with 

the magnetic field zone (Fig. 6). 
The distribution of the parameters in the plane z, y averaged over z is described by 

the following system of equations : 

(3.2) 

The quantities (PBC and cp;wn in relations (3.2) are the potentials of the lower and 
upper electrodes. 

In addition to the situation depicted in Fig. 6 it 
is possible to have one in which the cluster bounds 
only the electrode portions of the walls (for I Q& 

and I < X ( ‘@). In this case the current distri- 
bution in the cluster is uniform. 

In the same way we can formulate the boundary 
value problem of the electric field distribution in 
a cluster as it emerges from the electrode zone 

lrtzlt tt tVxl 

(which coincides with the magnetic field zone). 

In (10 - 14) it is shown that boundary value prob- 
lem (3.1) is reducible to a simpler problem which 

Fig. 6 consists in determining the effective internal resis- 
tance Xi of the segment ABlT&A$N on passage 

of an electric current through the electrodes BC and JfD in the absence of a magne- 
tic field. The quantity Ri is given by 

RI =(2ac@)-' (3.3) 
where CD is a function which depends on the geometric parameters q and 6~ i/h (q is 
the dimensionless of the portion of the electrode bounding the cluster). On entry of the 
cluster into the field zone we have q = 9. For the values l < y/t and 1 < x < yh 
we have q = b = const. 
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Using the methods developed in [14], we can show that the electric current s flowing 
through the cluster is given by 

J = (24~) aqVB, -2aoU@, u =cpBC -_A{0 (3.41, 
Under condition (3.2) we have 

I&‘/c=__ 9’ 
V B,h l+rcD ’ r = 2aRa (3.5) 

The function K depends on the argument q ‘which varies with displacement of the 
cluster, and on the constant parameters r and Jz. The parameter r characterizes the 
external load. 

The quantity A $efir&d by Formula (1.7) 

can be expressed as 
I 

I 
A= 2 d?*v%~q (1 - Ic) (3.6) 

I 
I 

-i L 
f 

Thus, the function S appearing in relations 

_ yh __ -Jx i 
(1.9)-( 1.11) is of the .form 

S= 911+r(@---~)I 

bh - 

:--I 

i+rlD (3.7) 
F 

- ‘i’! 
Let us cite formulas for determining the quan- 

tity a. When the cluster is in the position indi- 

Fig. 7 cated in Fig. 6. we can use the results of [15] to 
obtain 

F (u, k) = # I< (k) (a = arc cm [f (=)I”) 
0 

(3.8) 

h-(k) = F (; , k), K’ (k) = K (_fl -- k2), 

(3.9) 
III these formulas F (0, k) and K (k) are partial and total elliptic integrals of the 

first kind, respectively. 
The third relation in (3.8) is an equation for determining the quantity k = k (b); 

the fourth relation yields p = p (b, 11). 
If the cluster is situated in the electrode zone, then (I, = q. 
As the cluster emerges from the electrode zone (q > ri 0 ( q - b < r), the 

function CD is given by Formulas (3.8),(3.9) in which rl has been replaced by r + 
$ , b - 7; finally, if the cluster is longer than the electrode zone, it can have the posi- 

tion shown in Fig. 7, for which 

z .;= 1/ (1 -PP)(l --xx) --- 

(1 + PI (1 + xl 
(3.10) 

1 IT (k) 

_=K(k) b Fi arccos+(~~, k}+(Jc)(b-1) 

;(z2y, k]+(k)(q-r) 
(3.11) 
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Here Eqs. (3.11) enable us to determine (*) the quantities k, p and .x. in succession, 
It is easy to see that AS/ & (0, i.e. that the quantity S increases monotonioally 

from S ==q’[l - (q/D)] to S = q as the external resistance decreases from R =@o 

toR -0, 

Fig. 8 

Hence, maximum braking of the cluster 
occurs with short circuiting (R = 0), and 
minimal braking when R = 00 (in open- 

circuit operation). However, even in open- 
circuit operation the quantity S is larger 
than it is with the cluster in the same posi- 

tion in a channel with nonconductive walls. 

_ .._ ____ 
, 1 7 

Fig. 9 

This is due to the fact that the presence of conductive areas in the walls facilitates the 
flow of circulating currents fn the end zones of the magnetic field. 

Let us consider the case where the cluster is shorter than the magnetic field zone 
46 (7). The function U* = 2’ h) defined in (1.11) is of the form ,, 

u* = p (b) t_ IbGqG5;Y) (3.12) 

u*=2p(b)+ &Y-b)-p(r+b-~) (Tdrl<+f+N 

The functions p (t$ characterizing the braking of the cluster on its entry into the 
electrode zone appear in Fig. 8. Then, on entering the magnetic field zone, the cluster 
moves at constant velocity if r = 00 ; its velocity decreases linearly with increasing 
‘1, if T < 00. Braking of the cluster on emergence from the electrode zone (as we see 

from (3.12)) is also described by the function lo (q). 
On passage of the cluster through the electrode zone, the electric power ,N given by 

Formula 
N = $ ~~~~*~~aqa (i +rrQ)l (3.13) 

appears across the external load. 

The sum electrical energy W supplied to the external load during the time of passage 

l ) Formulas (3.10) and (3.11) have been derived ~de~ndently by I. M. Rutkevich and 
E. K. Kholshchevmkova. 
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of the cluster through the magnetic field, and the energy conversion efficiency 5 defined 
as the ratio N/A are given by Formulas 

+m 
IV = + oV ,2B,=h3r a u (11) cla (“rl) d? s (l+rW ’ E = (1 + rcD) [lrY r (0 - q)J 

--cd 

The functions E (11) corresponding to the conditions b = 5, r = 1 appear in Fig. 9. 

The broken curves denote the electrical energy generating efficiency without allowance 
for eddy currents. 
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